3.2.53 \(\int \sec ^8(c+d x) (a+a \sin (c+d x))^{7/2} \, dx\) [153]

Optimal. Leaf size=171 \[ -\frac {a^{7/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{8 \sqrt {2} d}+\frac {a^3 \sec (c+d x) \sqrt {a+a \sin (c+d x)}}{8 d}+\frac {a^2 \sec ^3(c+d x) (a+a \sin (c+d x))^{3/2}}{12 d}+\frac {a \sec ^5(c+d x) (a+a \sin (c+d x))^{5/2}}{10 d}+\frac {\sec ^7(c+d x) (a+a \sin (c+d x))^{7/2}}{7 d} \]

[Out]

1/12*a^2*sec(d*x+c)^3*(a+a*sin(d*x+c))^(3/2)/d+1/10*a*sec(d*x+c)^5*(a+a*sin(d*x+c))^(5/2)/d+1/7*sec(d*x+c)^7*(
a+a*sin(d*x+c))^(7/2)/d-1/16*a^(7/2)*arctanh(1/2*cos(d*x+c)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))/d*2^(1/2)+
1/8*a^3*sec(d*x+c)*(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 171, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2754, 2728, 212} \begin {gather*} -\frac {a^{7/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{8 \sqrt {2} d}+\frac {a^3 \sec (c+d x) \sqrt {a \sin (c+d x)+a}}{8 d}+\frac {a^2 \sec ^3(c+d x) (a \sin (c+d x)+a)^{3/2}}{12 d}+\frac {\sec ^7(c+d x) (a \sin (c+d x)+a)^{7/2}}{7 d}+\frac {a \sec ^5(c+d x) (a \sin (c+d x)+a)^{5/2}}{10 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^8*(a + a*Sin[c + d*x])^(7/2),x]

[Out]

-1/8*(a^(7/2)*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(Sqrt[2]*d) + (a^3*Sec[c + d
*x]*Sqrt[a + a*Sin[c + d*x]])/(8*d) + (a^2*Sec[c + d*x]^3*(a + a*Sin[c + d*x])^(3/2))/(12*d) + (a*Sec[c + d*x]
^5*(a + a*Sin[c + d*x])^(5/2))/(10*d) + (Sec[c + d*x]^7*(a + a*Sin[c + d*x])^(7/2))/(7*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2754

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p + 1))), x] + Dist[a*((m + p + 1)/(g^2*(p + 1))), Int
[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2,
0] && GtQ[m, 0] && LeQ[p, -2*m] && IntegersQ[m + 1/2, 2*p]

Rubi steps

\begin {align*} \int \sec ^8(c+d x) (a+a \sin (c+d x))^{7/2} \, dx &=\frac {\sec ^7(c+d x) (a+a \sin (c+d x))^{7/2}}{7 d}+\frac {1}{2} a \int \sec ^6(c+d x) (a+a \sin (c+d x))^{5/2} \, dx\\ &=\frac {a \sec ^5(c+d x) (a+a \sin (c+d x))^{5/2}}{10 d}+\frac {\sec ^7(c+d x) (a+a \sin (c+d x))^{7/2}}{7 d}+\frac {1}{4} a^2 \int \sec ^4(c+d x) (a+a \sin (c+d x))^{3/2} \, dx\\ &=\frac {a^2 \sec ^3(c+d x) (a+a \sin (c+d x))^{3/2}}{12 d}+\frac {a \sec ^5(c+d x) (a+a \sin (c+d x))^{5/2}}{10 d}+\frac {\sec ^7(c+d x) (a+a \sin (c+d x))^{7/2}}{7 d}+\frac {1}{8} a^3 \int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\\ &=\frac {a^3 \sec (c+d x) \sqrt {a+a \sin (c+d x)}}{8 d}+\frac {a^2 \sec ^3(c+d x) (a+a \sin (c+d x))^{3/2}}{12 d}+\frac {a \sec ^5(c+d x) (a+a \sin (c+d x))^{5/2}}{10 d}+\frac {\sec ^7(c+d x) (a+a \sin (c+d x))^{7/2}}{7 d}+\frac {1}{16} a^4 \int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx\\ &=\frac {a^3 \sec (c+d x) \sqrt {a+a \sin (c+d x)}}{8 d}+\frac {a^2 \sec ^3(c+d x) (a+a \sin (c+d x))^{3/2}}{12 d}+\frac {a \sec ^5(c+d x) (a+a \sin (c+d x))^{5/2}}{10 d}+\frac {\sec ^7(c+d x) (a+a \sin (c+d x))^{7/2}}{7 d}-\frac {a^4 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{8 d}\\ &=-\frac {a^{7/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{8 \sqrt {2} d}+\frac {a^3 \sec (c+d x) \sqrt {a+a \sin (c+d x)}}{8 d}+\frac {a^2 \sec ^3(c+d x) (a+a \sin (c+d x))^{3/2}}{12 d}+\frac {a \sec ^5(c+d x) (a+a \sin (c+d x))^{5/2}}{10 d}+\frac {\sec ^7(c+d x) (a+a \sin (c+d x))^{7/2}}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 5.32, size = 139, normalized size = 0.81 \begin {gather*} \frac {(a (1+\sin (c+d x)))^{7/2} \left ((105+105 i) (-1)^{3/4} \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (c+d x)\right )\right )\right )+\frac {2286-770 \cos (2 (c+d x))-2471 \sin (c+d x)+105 \sin (3 (c+d x))}{4 \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^7}\right )}{840 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^7} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^8*(a + a*Sin[c + d*x])^(7/2),x]

[Out]

((a*(1 + Sin[c + d*x]))^(7/2)*((105 + 105*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])
] + (2286 - 770*Cos[2*(c + d*x)] - 2471*Sin[c + d*x] + 105*Sin[3*(c + d*x)])/(4*(Cos[(c + d*x)/2] - Sin[(c + d
*x)/2])^7)))/(840*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^7)

________________________________________________________________________________________

Maple [A]
time = 0.47, size = 139, normalized size = 0.81

method result size
default \(\frac {\left (1+\sin \left (d x +c \right )\right ) \left (-210 a^{\frac {15}{2}} \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )+770 a^{\frac {15}{2}} \left (\cos ^{2}\left (d x +c \right )\right )+1288 a^{\frac {15}{2}} \sin \left (d x +c \right )-1528 a^{\frac {15}{2}}+105 \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{4} \left (a -a \sin \left (d x +c \right )\right )^{\frac {7}{2}}\right )}{1680 a^{\frac {7}{2}} \left (\sin \left (d x +c \right )-1\right )^{3} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(139\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^8*(a+a*sin(d*x+c))^(7/2),x,method=_RETURNVERBOSE)

[Out]

1/1680/a^(7/2)*(1+sin(d*x+c))/(sin(d*x+c)-1)^3*(-210*a^(15/2)*sin(d*x+c)*cos(d*x+c)^2+770*a^(15/2)*cos(d*x+c)^
2+1288*a^(15/2)*sin(d*x+c)-1528*a^(15/2)+105*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^4*(
a-a*sin(d*x+c))^(7/2))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^8*(a+a*sin(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 312 vs. \(2 (144) = 288\).
time = 0.39, size = 312, normalized size = 1.82 \begin {gather*} \frac {105 \, {\left (3 \, \sqrt {2} a^{3} \cos \left (d x + c\right )^{3} - 4 \, \sqrt {2} a^{3} \cos \left (d x + c\right ) - {\left (\sqrt {2} a^{3} \cos \left (d x + c\right )^{3} - 4 \, \sqrt {2} a^{3} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (\sqrt {2} \cos \left (d x + c\right ) - \sqrt {2} \sin \left (d x + c\right ) + \sqrt {2}\right )} \sqrt {a} + 3 \, a \cos \left (d x + c\right ) - {\left (a \cos \left (d x + c\right ) - 2 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + 4 \, {\left (385 \, a^{3} \cos \left (d x + c\right )^{2} - 764 \, a^{3} - 7 \, {\left (15 \, a^{3} \cos \left (d x + c\right )^{2} - 92 \, a^{3}\right )} \sin \left (d x + c\right )\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{3360 \, {\left (3 \, d \cos \left (d x + c\right )^{3} - 4 \, d \cos \left (d x + c\right ) - {\left (d \cos \left (d x + c\right )^{3} - 4 \, d \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^8*(a+a*sin(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

1/3360*(105*(3*sqrt(2)*a^3*cos(d*x + c)^3 - 4*sqrt(2)*a^3*cos(d*x + c) - (sqrt(2)*a^3*cos(d*x + c)^3 - 4*sqrt(
2)*a^3*cos(d*x + c))*sin(d*x + c))*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(a*sin(d*x + c) + a)*(sqrt(2)*cos(d*
x + c) - sqrt(2)*sin(d*x + c) + sqrt(2))*sqrt(a) + 3*a*cos(d*x + c) - (a*cos(d*x + c) - 2*a)*sin(d*x + c) + 2*
a)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2)) + 4*(385*a^3*cos(d*x + c)^2 - 764*a^
3 - 7*(15*a^3*cos(d*x + c)^2 - 92*a^3)*sin(d*x + c))*sqrt(a*sin(d*x + c) + a))/(3*d*cos(d*x + c)^3 - 4*d*cos(d
*x + c) - (d*cos(d*x + c)^3 - 4*d*cos(d*x + c))*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**8*(a+a*sin(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 3.16, size = 127, normalized size = 0.74 \begin {gather*} -\frac {\sqrt {2} a^{\frac {7}{2}} {\left (\frac {2 \, {\left (105 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 35 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 21 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15\right )}}{\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7}} - 105 \, \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) + 105 \, \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )\right )} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{3360 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^8*(a+a*sin(d*x+c))^(7/2),x, algorithm="giac")

[Out]

-1/3360*sqrt(2)*a^(7/2)*(2*(105*sin(-1/4*pi + 1/2*d*x + 1/2*c)^6 + 35*sin(-1/4*pi + 1/2*d*x + 1/2*c)^4 + 21*si
n(-1/4*pi + 1/2*d*x + 1/2*c)^2 + 15)/sin(-1/4*pi + 1/2*d*x + 1/2*c)^7 - 105*log(sin(-1/4*pi + 1/2*d*x + 1/2*c)
 + 1) + 105*log(-sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{7/2}}{{\cos \left (c+d\,x\right )}^8} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^(7/2)/cos(c + d*x)^8,x)

[Out]

int((a + a*sin(c + d*x))^(7/2)/cos(c + d*x)^8, x)

________________________________________________________________________________________